The Isoperimetric Number of Random Regular Graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the isoperimetric number of strongly regular graphs

A factor 2 and a factor 3 approximation algorithm are given for the isoperimetric number of Strongly Regular Graphs. One approach involves eigenvalues of the combinatorial laplacian of such graphs. In this approach, both the upper and lower bounds involve the spectrum of the combinatorial laplacian. An interesting inequality is proven between the second smallest and the largest eigenvalue of co...

متن کامل

Lower Bounds for the Isoperimetric Numbers of Random Regular Graphs

The vertex isoperimetric number of a graph G = (V ,E) is the minimum of the ratio |∂V U |/|U | where U ranges over all nonempty subsets of V with |U |/|V | ≤ u and ∂V U is the set of all vertices adjacent to U but not in U . The analogously defined edge isoperimetric number—with ∂V U replaced by ∂EU , the set of all edges with exactly one endpoint in U —has been studied extensively. Here we stu...

متن کامل

The Chromatic Number of Random Regular Graphs

Given any integer d ≥ 3, let k be the smallest integer such that d < 2k log k. We prove that with high probability the chromatic number of a random d-regular graph is k, k + 1, or k + 2.

متن کامل

On the Number of Spanning Trees in Random Regular Graphs

Let d > 3 be a fixed integer. We give an asympotic formula for the expected number of spanning trees in a uniformly random d-regular graph with n vertices. (The asymptotics are as n → ∞, restricted to even n if d is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary ...

متن کامل

On the chromatic number of random d-regular graphs

In this work we show that, for any fixed d, random d-regular graphs asymptotically almost surely can be coloured with k colours, where k is the smallest integer satisfying d < 2(k−1) log(k−1). From previous lower bounds due to Molloy and Reed, this establishes the chromatic number to be asymptotically almost surely k− 1 or k. If moreover d > (2k−3) log(k−1), then the value k−1 is discarded and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1988

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(88)80014-3